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Abstract

To seek general-purpose numerical schemes for hyperbolic problems, the ADER approach has been reviewed on the
state-series expansion forms and the direct expansion forms in the viewpoint of the numerical procedure and the accuracy,
and the advantages and disadvantages of the latter forms have been discussed. As ADER direct expansion schemes,
ADER-D (standard ones with Godunov states/fluxes) and ADER-waf (ones with WAF states/fluxes) are adopted. Then,
verification has been carried out on the scalar conservation laws with a linear flux, nonlinear convex fluxes, and various
types of nonlinear non-convex fluxes. Convergence studies have shown that all the ADER schemes achieve the designed
order of accuracy up to small cell sizes, yield small errors even in large cell sizes, and have computational efficiency with
keeping the CFL number close to unity. Capturability of discontinuity and rarefaction has been investigated. As results,
the ADER schemes have worked well for the problem of long-time propagation in the linear cases and for the problems of
complicated wave formation and interaction in the nonlinear cases corresponding to various types of convex and non-con-
vex fluxes. It is remarkable that ADER-waf schemes have shown sharper resolvability than the other ADER schemes, but
have less robustness.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It is very challenging to seek and develop more general-purpose numerical schemes for hyperbolic prob-
lems, because conventionally numerical schemes are optimized either for a linear or for a non-linear flow
models. Even in a few cases which are optimized for both models, the model equations are the linear advec-
tion equation and the Burgers’ equation with convex flux, and problems on non-convex fluxes have not been
taken into account. However, in some scalar model equations there appears the non-convex property such
as the Buckley–Leverett equations for two phase fluid flow in a porous media. Furthermore even in the
Euler equations, there are occasions where the state equation is different from that of the usual fluid, for
example, in the high-temperature gas with dissociation and in the atmosphere at entry of vehicles to planets
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other than Earth, etc. In such cases fluxes are not always convex. Therefore for these future problems it is
very important to seek the numerical algorithms to treat linearity, convexity, and non-convexity accurately
and generally.

A candidate for the general-purpose schemes is the arbitrary accuracy derivative riemann problem (ADER)
approach recently developed as extension of Godunov-type schemes [2]. The ADER approach [18–20] is to
construct explicit, one-step advection schemes with very high order of accuracy in both space and time on
the basis of the solution of GRP (generalized Riemann problem) obtained by use of the solutions of the con-
ventional RP (Riemann problem) and derivative RPs (DRPs). Two methods are possible for ADER schemes
to solve general nonlinear conservation laws: methods based on state-series expansion [19] and direct expan-
sion [11]. Recently it has been extended, with high accuracy, to nonlinear conservation laws with source terms
[12,13] and diffusion terms [14] and to those in multi-space dimensions [22], and applied to the practical fluid
dynamics problems such as the Euler equation system [15].

This paper is intended to investigate, as a basic research, if the ADER approach can be the general-purpose
algorithm. First, the ADER schemes based on the state-series expansion and the direct expansion are reviewed
in the viewpoint of the numerical procedure and the accuracy. Special emphasis is placed on verification of
ADER schemes in the direct expansion forms, and another version with high resolvability is also included
in the verification. The advantages and the disadvantages of the ADER schemes in direct-expansion forms
are discussed in comparison with those in state-series expansion forms. Then, numerical verifications are car-
ried out on the scalar conservation laws: otq + oxf(q) = 0. On the ADER schemes, verification has been suc-
cessfully shown for the linear advection equations with f(q) = q and the Burgers’ equations with f(q) = q2/2 (a
nonlinear case with a convex flux) till now. This paper shows the verification of ADER schemes more inclu-
sively to investigate the applicability for wider range of problems. Convergence is studied for the linear prob-
lem with f(q) = q, the nonlinear problems with convex fluxes f(q) = q2/2, q4/4, and nonlinear problems with
non-convex ones f(q) = q3/3, q5/5. Furthermore verification is carried out on various patterns of wave forma-
tion and interaction on shocks and expansions for the fluxes above and another type of non-convex fluxes,
f(q) = (1/4)(q2 � 1)(q2 � 4) and f(q) = q2/(q2 + a(1 � q)2) (Buckley–Leverett equations).
2. Governing equation and conservative scheme

Here the initial value problem of the scalar conservation law is considered,
otqþ oxf ðqÞ ¼ 0; ð1Þ

together with the IC
qðx; 0Þ � q0ðxÞ; ð2Þ

where q(x, t) is the conserved variable, f(q) is the flux function, and q0(x) is the initial distribution of q. Eq. (1)
can be described as follows:
otqþ kðqÞoxq ¼ 0; ð3Þ

where k(q) is the characteristic speed defined by
kðqÞ � df
dq
: ð4Þ
Integrating (1) in time and space ½tn; tnþ1� � xi�1
2
; xiþ1

2

h i
gives the conservative form
qnþ1
i ¼ qn

i �
Dt
Dx

fiþ1
2
� fi�1

2

h i
; ð5Þ
where qn
i is the spatial average of q at time t = tn
qn
i ¼

1

Dx

Z x
iþ1

2

x
i�1

2

qðx; tnÞdx; ð6Þ
fiþ1
2

is the time average of f(q) at cell interface x ¼ xiþ1
2
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fiþ1
2
¼ 1

Dt

Z tnþ1

tn

f ðqðxiþ1
2
; tÞÞdt; ð7Þ
and cells, cell sizes, time-step sizes are defined by
I i � ½xi�1
2
; xiþ1

2
�; ð8Þ

Dx ¼ xiþ1
2
� xi�1

2
; ð9Þ

Dt ¼ tnþ1 � tn: ð10Þ
The ADER approach is a type of Godunov schemes [2] based on the conservative form (5).

3. ADER approach

Here the ADER approach with mth order of accuracy in time and rth order of accuracy in space is pre-
sented in the viewpoint of the numerical procedure and the accuracy. As to basic derivation, see Ref. [11].
When m = r is taken, the resulting ADER schemes have the rth order of accuracy in both time and space.
First, the ADER schemes based on state-series expansion are presented, and then those based on direct expan-
sion are explained.

3.1. Method based on state-series expansion

The ADER approach in the state-series expansion consists of the following steps 3.1.1–3.1.4.

3.1.1. Reconstruction and GRP

At each time tn, the data in the form of cell-averages qn
i are reconstructed by piece-wise smooth functions

pi(x) for cell Ii. To avoid spurious oscillations in the vicinity of discontinuities, the ENO or WENO [3,9] poly-
nomial interpolations are adopted. With r stencils, polynomial pi(x) of degree at most r � 1 can be con-
structed, and the spatial accuracy is rth order in the case of the ENO interpolations, and (2r � 1)th order
in the case of the WENO interpolations:
ENO : piðxÞ ¼ qðx; tnÞ þOðDxrÞ; ð11Þ
WENO : piðxÞ ¼ qðx; tnÞ þOðDx2r�1Þ; ð12Þ
but the spatial accuracy for the kth order derivative for q is (r � k)th order in the both ones:
ENO=WENO : oðkÞx piðxÞ ¼ qðkÞx ðx; tnÞ þOðDxr�kÞ: ð13Þ
From this reason, the order of spatial accuracy in the ADER schemes is rth, even if either the ENO or the
WENO interpolations may be used. However, as the values of errors are smaller with the WENO, the WENO
interpolations are adopted here. About the discussion on the accuracy of ADER approach, see Section 4.

Near each cell interface xiþ1
2

at time tn, introduce
n ¼ x� xiþ1
2
;

s ¼ t � tn

Qðn; sÞ ¼ qðxiþ1
2
þ n; tn þ sÞ

8><
>: ð14Þ
and consider the GRP having the following PDE and the IC on n 2 (�1,+1) and s 2 [0,+1):
PDE : osQþ onf ðQÞ ¼ 0; ð15Þ

IC : Qðn; 0Þ ¼
pi xiþ1

2
þ n

� �
if n < 0;

piþ1 xiþ1
2
þ n

� �
if n > 0;

8><
>: ð16Þ
where the initial data are the reconstructed polynomial functions translated by �xiþ1
2
.
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3.1.2. Expansion with Cauchy–Kowalewski procedure

When the solution of GRP (15) and (16) is differentiable on time and space up to the (m � 1)th order near
n = 0 and s! +0, it is expressed as a time Taylor-series expansion:
Qð0; sÞ ¼ Qð0;þ0Þ þ
Xm�1

k¼1

sk

k!
o
ðkÞ
s Qð0;þ0Þ þOðsmÞ; ð17Þ
When conservation law (3) is linear with constant k, all time derivatives of q can be replaced with space deriv-
atives of q, using the governing equation:
oðkÞt q ¼ ð�kÞkoðkÞx q; ð18Þ

which we call Lax–Wendroff [6] procedure. When conservation law (3) is nonlinear, Cauchy–Kowalewski pro-
cedure [4] is adopted as follows:
otq ¼ �kqx; ð19Þ
ottq ¼ �kqtx � kqqtqx; ð20Þ
fqtx ¼ �kqxx � kqq2

x ; ð21Þ
otttq ¼ �kqttx � 2kqqtqtx � kqqttqx � kqqq2

t qx; ð22Þ
qttx ¼ �kqtxx � kqqtqxx � 2kqqxqtx � kqqqtq

2
x ;

qtxx ¼ �kqxxx � 3kqqxqxx � kqqq3
x ;

(
ð23Þ

..

.

and time derivatives of q can be expressed with space derivatives of q:
o
ðkÞ
t q ¼ aðkÞðqð0Þx ; . . . ; qðkÞx Þ: ð24Þ
Thus, the time Taylor-series expansion (17) leads to the following equation:
Qð0; sÞ ¼ q xiþ1
2
; tn þ 0

� �
þ
Xm�1

k¼1

sk

k!
aðkÞ qð0Þx xiþ1

2
; tn þ 0

� �
; . . . ; qðkÞx xiþ1

2
; tn þ 0

� �� �
þOðsmÞ: ð25Þ
3.1.3. Solution of GRP by use of RP and DRPs

The solution of the GRP at n = 0 is approximated in the mth order of accuracy as
QGRPm
iþ1

2
ð0; sÞ ¼ qð0Þ

iþ1
2

þ
Xm�1

k¼1

sk

k!
aðkÞ qð0Þ

iþ1
2

; . . . ; qðkÞ
iþ1

2

� �
: ð26Þ
Here qð0Þ
iþ1

2

is the solution at (n,s) = (0,+0) of the conventional RP:
PDE : osQþ onf ðQÞ ¼ 0; ð27Þ

IC : Qðn; 0Þ ¼
qð0ÞL iþ1

2
if n < 0;

qð0ÞR iþ1
2

if n > 0;

8<
: ð28Þ
which is given by the value at n/s = 0 of the similarity solution for the above RP, and we call it Godunov state.
qðkÞ

iþ1
2

ðk ¼ 1; . . . ;m� 1Þ are the solutions at (n,s) = (0,+0) of the kth order derivative RP (DRP) locally
linearized:
PDE : osvþ k qð0Þ
iþ1

2

� �
onv ¼ 0; ð29Þ

IC : vðn; 0Þ ¼
qðkÞL iþ1

2
if n < 0;

qðkÞR iþ1
2

if n > 0;

8<
: ð30Þ
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where v ¼ o
ðkÞ
n Q, and they are given by the values at n/s = 0 of the similarity solutions for the DRPs. qðkÞL iþ1

2
and

qðkÞR iþ1
2

in ICs. Eqs. (28) and (30) are given by
qðkÞL iþ1
2
� lim

x!x
iþ1

2
�0

o
ðkÞ
x piðxÞ;

qðkÞR iþ1
2
� lim

x!x
iþ1

2
þ0

o
ðkÞ
x piþ1ðxÞ:

8>><
>>: ð31Þ

� �

When Q is scalar, Godunov state qð0Þ

iþ1
2

is obtained as qGod qð0ÞL iþ1
2
; qð0ÞR iþ1

2
in Osher’s formula [7], where the

Godunov flux fGod is defined as follows [5]:
f God ¼ f qGod qð0ÞL iþ1
2
; qð0ÞR iþ1

2

� �� �
¼

min
qð0Þ

L iþ1
2
6q6qð0Þ

R iþ1
2

f ðqÞ if qð0ÞL iþ1
2
6 qð0ÞR iþ1

2
;

max
qð0Þ

L iþ1
2
PqPqð0Þ

R iþ1
2

f ðqÞ if qð0ÞL iþ1
2
P qð0ÞR iþ1

2
;

8>>><
>>>:

ð32Þ
and qðkÞ
iþ1

2

ðk ¼ 1; . . . ;m� 1Þ are given by
qðkÞ
iþ1

2

¼
qðkÞL iþ1

2
if kðqð0Þ

iþ1
2

Þ > 0;

qðkÞR iþ1
2

if kðqð0Þ
iþ1

2

Þ < 0:

8<
: ð33Þ
3.1.4. ADER numerical flux function

The mth order ADER numerical flux in state-series expansion is obtained by time average
f ADERm-S
iþ1

2
¼ 1

Dt

Z Dt

0

f QGRPm
iþ1

2
ð0; sÞ

� �
ds; ð34Þ
which can be carried out numerically by a suitable Gaussian quadrature. When f ADERm-S
iþ1

2
is used with conser-

vative form (5), the mth order ADER state-series expansion scheme denoted by ADERm-S is obtained.

3.2. Method based on direct expansion

Another approach relies on the Taylor-series expansion directly for flux function f and the conservation law
for flux f, which is derived by multiplying conservation law (1) by k(q) = df(q)/dq:
otf þ kðqÞoxf ¼ 0: ð35Þ
3.2.1. Reconstruction and GRP

At each time tn fluxes should be also reconstructed to piece-wise smooth functions gi(x) for cell Ii. Two ways
are possible for reconstruction of f.

Rf-1: Compute cell-averaged values of f using the interpolation function for q, pi(x),
�f i ¼
1

Dx

Z x
iþ1

2

x
i�1

2

f ðpiðxÞÞdx; ð36Þ
which can be approximated by an appropriate Gaussian quadrature, and construct gi(x) by ENO/WENO
interpolations, and obtain o

ðkÞ
x giðxÞ.

Rf-2: Define
giðxÞ � f ðpiðxÞÞ: ð37Þ

Represent spatial derivatives oðkÞx f by terms of spatial derivatives oðjÞx q as
f ¼ f ðqÞ ð38Þ
fx ¼ kðqÞqx; ð39Þ
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fxx ¼ kðqÞqxx þ kqðqÞðqxÞ
2
; ð40Þ

..

.

f ðkÞx ¼ wðkÞðqð0Þx ; qð1Þx ; . . . ; qðkÞx Þ; ð41Þ
and then, using interpolation functions pi(x) instead of q(x), obtain o
ðkÞ
x giðxÞ:
oðkÞx giðxÞ ¼ wðkÞðpð0Þi ðxÞ; p
ð1Þ
i ðxÞ; . . . ; pðkÞi ðxÞÞ: ð42Þ
In both reconstruction ways, when r stencils are used, corresponding to the accuracy of pi(x), the following
orders of accuracy are estimated for gi(x) [11]
ENO : giðxÞ ¼ f ðx; tnÞ þOðDxrÞ; ð43Þ
WENO : giðxÞ ¼ f ðx; tnÞ þOðDx2r�1Þ; ð44Þ
but the spatial accuracy for the kth order derivative for f is (r � k)th order in the both cases:
ENO=WENO : o
ðkÞ
x giðxÞ ¼ f ðkÞx ðx; tnÞ þOðDxr�kÞ: ð45Þ
and then the spatial accuracy of the ADER approach is rth order (see Section 4). As way Rf-2 is effective
because it only requires algebraic operations for reconstructed q and its spatial derivatives, here the second
way is used.

Near each cell interface xiþ1
2

at time tn, introduce Eq. (14) and
F ðn; sÞ ¼ f xiþ1
2
þ n; tn þ s

� �
; ð46Þ
and consider the GRP for F
PDE : osF þ kðQÞonF ¼ 0; ð47Þ

IC : F ðn; 0Þ ¼
gi xiþ1

2
þ n

� �
if n < 0;

giþ1 xiþ1
2
þ n

� �
if n > 0;

8><
>: ð48Þ
where the initial data are the reconstructed polynomial functions translated by �xiþ1
2
.

3.2.2. Expansion with Cauchy–Kowalewski procedure

As similar to the case of the state-series expansion, when the solution of the GRP (47) and (48) is differen-
tiable on time and space up to the (m � 1)th order near n = 0 and s! +0, it is expressed as a time Taylor-
series expansion:
F ð0; sÞ ¼ F ð0;þ0Þ þ
Xm�1

k¼1

sk

k!
oðkÞs F ð0;þ0Þ þOðsmÞ: ð49Þ
When conservation law (35) is linear with constant k, all time derivatives of f can be replaced with space deriv-
atives of f through Lax–Wendroff [6] procedure:
oðkÞt f ¼ ð�kÞkoðkÞx f ; ð50Þ
When conservation law (35) is nonlinear, Cauchy–Kowalewski procedure [4] is adopted as follows:
otf ¼ �kfx; ð51Þ
ottf ¼ �kftx � kqqtfx; ð52Þ
fftx ¼ �kfxx � kqqxfx; ð53Þ
otttf ¼ �kfttx � 2kqqtftx � kqqttfx � kqqq2

t fx; ð54Þ
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fttx ¼ �kftxx � kqqxftx � kqqtfxx � kqqtxfx � kqqqtqxfx;

ftxx ¼ �kfxxx � 2kqqxfxx � kqqxxfx � kqqq2
xfx;

�
ð55Þ

..

.

and time derivatives of f are expressed with the space derivatives of q and f:
o
ðkÞ
t f ¼ bðkÞðqð0Þx ; . . . ; qðk�1Þ

x ; f ð1Þx ; . . . ; f ðkÞx Þ: ð56Þ
Thus, the time Taylor-series expansion (49) leads to the following equation:
F ð0; sÞ ¼ f ðxiþ1
2
; tn þ 0Þ þ

Xm�1

k¼1

sk

k!
bðkÞ qð0Þx xiþ1

2
; tn þ 0

� �
; . . . ; qðk�1Þ

x xiþ1
2
; tn þ 0

� �
;

�

f ð1Þx xiþ1
2
; tn þ 0

� �
; . . . ; f ðkÞx xiþ1

2
; tn þ 0

� ��
þOðsmÞ: ð57Þ
3.2.3. Solution of GRP by use of RP and DRPs

The solution of the GRP for F at n = 0 is approximated with mth order of accuracy:
F GRPm
iþ1

2
ð0; sÞ ¼ f ð0Þ

iþ1
2

þ
Xm�1

k¼1

sk

k!
bðkÞ qð0Þ

iþ1
2

; . . . ; qðk�1Þ
iþ1

2

; f ð1Þ
iþ1

2

; . . . ; f ðkÞ
iþ1

2

� �
: ð58Þ
To avoid entropy violation, f ð0Þ
iþ1

2

should be the flux of a monotone method, and here Godunov flux (32) is

adopted. f ðkÞ
iþ1

2

ðk ¼ 1; . . . ;m� 1Þ are the solutions at (n,s) = (0, +0) of the kth order DRP on f locally linearized:
PDE : oswþ k qð0Þ
iþ1

2

� �
onw ¼ 0; ð59Þ

IC : wðn; 0Þ ¼
f ðkÞL iþ1

2
if n < 0;

f ðkÞR iþ1
2

if n > 0;

8<
: ð60Þ
where w ¼ o
ðkÞ
n F and
f ðkÞL iþ1
2
� lim

x!x
iþ1

2
�0

oðkÞx giðxÞ;

f ðkÞR iþ1
2
� lim

x!x
iþ1

2
þ0

oðkÞx giþ1ðxÞ;

8>><
>>: ð61Þ
and they are given by the values at n/s = 0 of the similarity solutions for the DRPs
f ðkÞ
iþ1

2

¼
f ðkÞL iþ1

2
if kðqð0Þ

iþ1
2

Þ > 0;

f ðkÞR iþ1
2

if kðqð0Þ
iþ1

2

Þ < 0:

8<
: ð62Þ
3.2.4. ADER numerical flux function

The mth order ADER numerical flux in direct expansion is obtained by time average
f ADERm-D
iþ1

2
¼ 1

Dt

Z Dt

0

F GRPm
iþ1

2
ð0; sÞds ¼ f ð0Þ

iþ1
2

þ
Xm�1

k¼1

ðDtÞk

ðk þ 1Þ! b
ðkÞ qð0Þ

iþ1
2

; . . . ; qðk�1Þ
iþ1

2

; f ð1Þ
iþ1

2

; . . . ; f ðkÞ
iþ1

2

� �
: ð63Þ
Notice that the numerical quadrature, which is included in the case of state-series expansion, is no more
needed. When f ADERm-D

iþ1
2

is used with conservative form (5), the mth order ADER direct expansion scheme de-

noted by ADERm-D is obtained.
Regarding the form of b(k) appearing in (63), different expressions than form (56) are possible by eliminat-

ing f ðjÞx or qðjÞx by use of (39)–(41): hereafter form (56) is denoted by bðkÞI ,
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oðkÞt f ¼ bðkÞI ðqð0Þx ; . . . ; qðk�1Þ
x ; f ð1Þx ; . . . ; f ðkÞx Þ; ð64Þ
a different form is
oðkÞt f ¼ bðkÞII ðqð0Þx ; f ð1Þx ; . . . ; f ðkÞx Þ; ð65Þ
and another form is
oðkÞt f ¼ bðkÞIII ðqð0Þx ; qð1Þx ; . . . ; qðkÞx Þ: ð66Þ
The forms of bðkÞI ; bðkÞII , bðkÞIII and w(k) are summarized in Appendix. As some of bðkÞII include 1/k, manipulation is
needed at k = 0.

Thus five ways are possible by combination of function forms for oðkÞt f with reconstructing methods for f:

A and B: oðkÞt f ¼ bðkÞI ðqð0Þx ; qð1Þx ; . . . ; qðk�1Þ
x ; f ð1Þx ; . . . ; f ðkÞx Þ with methods Rf-1 and Rf-2, respectively.

C and D: oðkÞt f ¼ bðkÞII ðqð0Þx ; f ð1Þx ; . . . ; f ðkÞx Þ with methods Rf-1 and Rf-2, respectively.

E: oðkÞt f ¼ bðkÞIII ðqð0Þx ; qð1Þx ; . . . ; qðkÞx Þ without DRPs for f.

In Ref. [11] the verification for five ways A–E is shown, where the designed order of accuracy is obtained in
convergence studies in all ways. Here way B or E is adopted for computational efficiency.

Another version of the ADER direct expansion schemes is suggested by Toro et al. in [21] by rearranging
the schemes, (5) and (63), as:
qnþ1
i ¼ qn

i �
ðDtÞ0
Dx

f ð0Þ
iþ1

2

� f ð0Þ
i�1

2

� �
�
Xm�1

k¼1

ðDtÞk
Dx

bðkÞ
iþ1

2

� bðkÞ
i�1

2

� �
ð67Þ
with
ðDtÞk ¼
ðDtÞkþ1

ðk þ 1Þ! ð68Þ
If the flux is linear: f = kq,
bðkÞ ¼ ð�kÞkoðkÞx f ¼ k ð�kÞkoðkÞx q
� �

ð69Þ
holds from the Lax–Wendroff procedure. Then, Eq. (67) can be interpreted as summation of solutions of evo-
lutional equations for state variable q ¼ oð0Þx q (first line) and its gradients oðkÞx q (second line) by the Godunov
first-order upwind method. This leads to the idea to replace the Godunov first-order flux with some high-order
flux of total variation diminishing (TVD) schemes, not in the first line of Eq. (67) only, but in all terms in the
expansion. Most of the modern TVD fluxes, however, achieve non-oscillatory behavior by imposing a certain
monotonicity constraint on extrapolated values qL iþ1

2
and qRiþ1

2
, or on fL iþ1

2
and fRiþ1

2
, and use of the constraint

prevents the ADER schemes from holding the designed order of accuracy. In [21] the TVD flux of the second-
order weighted average flux (WAF) method [16] is recommended to use with the ADER schemes because it is
the only high-order TVD flux which needs no constraints on the extrapolated values. ADERm-waf schemes
are obtained by applying the WAF flux as the leading flux in the first line of (67) and also the WAF states or
WAF fluxes as the solutions of DRPs for q or f in the second line with a TVD limiter.

Thus, the advantages of the direct expansion in comparison with the state-series expansion are as follows:
(1) in the ADER flux of the direct-expansion forms, the numerical quadrature, which is included in the state-
series expansion forms, is not necessary; and (2) it is possible to combine with a suitable high-order TVD flux
and obtain higher resolvability. The disadvantage is that the Cauchy–Kowalewski procedure becomes more
complicated. However, the disadvantage is not essential, because this procedure can be carried out with the
aid of software tools such as MAPLE or Mathematica. Because of the benefits above, solutions based on
the direct-expansion are demonstrated in the verification.
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4. Accuracy

The accuracy of the method based on direct expansion is presented here. For the ADER approach (5) and
(63), the local truncation error is defined by
T ðxi; tnÞ �
1

Dt
fqðxi; tn þ DtÞ � qðxi; tnÞg þ

1

Dx
f ADERm-D

iþ1
2

� f ADERm-D
i�1

2

n o

¼ 1

Dt
fqðxi; tn þ DtÞ � qðxi; tnÞg þ

Xm�1

k¼0

ðDtÞk

ðk þ 1Þ!
1

Dx
bðkÞi xiþ1

2

� �
� bðkÞi xi�1

2

� �n o� �
; ð70Þ
where bðkÞi ðxÞ are defined as follows:
bð0Þi ðxÞ � giðxÞ; ð71Þ
bðkÞi ðxÞ � bðkÞI ðpiðxÞ; oð1Þx piðxÞ; . . . ; oðk�1Þ

x piðxÞ; oð1Þx giðxÞ; . . . ; oðkÞx giðxÞÞ; for k ¼ 1; . . . ;m� 1: ð72Þ
The accuracy of pi(x) and oðkÞx piðxÞ is shown in Eqs. (11)–(13), and the corresponding accuracy of gi(x) and
o
ðkÞ
x giðxÞ is in Eqs. (43)–(45). At each cell interface xiþ1

2
the solution of the GRP is used, which is very effective

to capture discontinuities, etc., clearly. However, the accuracy is discussed usually on the assumption of a
smooth solution. When the reconstruction errors of the left and right states of q and f are those shown for
pi(x) and gi(x), then in the scalar conservation laws the solution of the GRP is within the error range.

In the ENO case, these accuracy evaluation gives for k = 0,1, . . ., r � 1
bðkÞi ðxÞ ¼ f ðkÞt ðx; tÞ þOðDxr�kÞ; ð73Þ
whatever formulae for f ðkÞt among bðkÞI in (64), bðkÞII in (65) and bðkÞIII in (66) might be used. Therefore the follow-
ing evaluation on space holds for k = 0,1, . . . ,m � 1 with r P m:
1

Dx
bðkÞi xiþ1

2

� �
� bðkÞi xi�1

2

� �n o
¼ ðf ðkÞt Þxðxi; tÞ þOðDxr�kÞ: ð74Þ
On the other hand, the time Taylor-series expansion brings the following evaluation on time:
1

Dt
fqðxi; tn þ DtÞ � qðxi; tnÞg ¼

Xm�1

k¼0

ðDtÞk

ðk þ 1Þ! qðkþ1Þ
t ðxi; tnÞ þOðDtmÞ: ð75Þ
Thus, with (74) and (75), local truncation error (70) becomes
T ðxi; tnÞ ¼
Xm�1

k¼0

ðDtÞk

ðk þ 1Þ! ½q
ðkþ1Þ
t ðxi; tnÞ þ ðf ðkÞt Þxðxi; tnÞ þOðDxr�kÞ� þOðDtmÞ

¼
Xm�1

k¼0

OðDtkDxr�kÞ þOðDtmÞ; ð76Þ
since the followings holds from governing Eq. (1),
qðkþ1Þ
t ðxi; tnÞ þ ðf ðkÞt Þxðxi; tnÞ ¼ 0: ð77Þ
If Dx and Dt keep a constant ratio, Dx/Dt < +1, we have
jT ðxi; tnÞj 6 CxDxr þ CtDtm: ð78Þ

It has been shown here that, by using the ENO reconstruction of r = m, the ADER scheme (5) with (63), (65)
or (66) is of order r in time and space.

However, summation of the spatial error in (76) might result in a large value of bound Cx in (78). Possibility
to increase the convergence rate is to use the WENO interpolation [9,1] with r stencils which satisfies (2r � 1)th
order of accuracy for q and f (Eqs. (12) and (44)) instead of rth order (Eqs. (11) and (43)); then, as
kðjÞq ðqÞ ðj ¼ 0; 1; . . . ; k � 1Þ included in bðkÞi ðxÞ are more accurately approximated in the case of WENO, the
bound value Cx can be significantly reduced. In the WENO case, however, notice that the order of accuracy
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for ADER schemes is same in the ENO case, because the order of accuracy for the kth derivatives of q and f is
(r � k) in both cases (Eqs. (13) and (45)), and therefore the order of accuracy for bðkÞi ðxÞ remains (r � k) as in
Eq. (73).

5. Numerical verification and discussion

Numerical verification has been carried out for conservation laws with flux functions f(q) = (1/a)qa (a =
1,2,3,4,5) where a = 1 corresponds to linear flux f(q) = q, a = 2,4 to nonlinear convex fluxes f(q) = (1/2)q2

and f(q) = (1/4)q4, and a = 3,5 to nonlinear non-convex fluxes f(q) = (1/3)q2 and f(q) = (1/5)q5, and another
types of non-convex fluxes, f(q) = (1/4)(q2 � 1)(q2 � 4) and f(q) = q2/(q2 + a(1 � q)2).

Here ADER schemes with r = m, i.e., with rth order of accuracy in time and space (r stencils) are verified.
For the reconstruction of data, mainly the WENO interpolation is adopted, but there are some occasions
where the ENO interpolation works better than the WENO one, for example, formation of complicated wave
structure. In notation, ADERr-D and ADERr-S represent the rth order ADER schemes with the Godunov
states/fluxes in direct expansion and state-series expansion, respectively. ADERr-waf represents the schemes
using the WAF states/fluxes averaged at half of the time stepping size [17] in the rth order direct expansion
forms, and here the SUPERBEE limiter of Roe [8] is used together. ADER1 (ADER1-D and ADER1-S)
and ADER1-waf correspond to the first-order Godunov upwind scheme and the second-order WAF scheme,
respectively.

For the purpose of comparison, WENO [9,1] finite-volume schemes with the third-order TVD Runge–
Kutta method [10] are adopted. In WENO schemes, use of r stencils yields (2r � 1)th order of accuracy in
space, and the following time stepping size
Dtw � Dxð2r�1Þ=3 ð79Þ

is used to hold the designed order of accuracy [1]. For r P 3 the power of Dx is (2r � 1)/3 > 1, and therefore
time stepping (79) causes very small value of Dt and consumes computing time. Here WENO schemes having r

stencils with Dtw by Eq. (79) and those with Dt by CFL condition are denoted by WENOr:dtw and
WENOr:cfl, respectively.

In all the computation of ADER and WENO:cfl schemes, here the CFL number is taken as 0.8.

5.1. Convergence studies: verification on accuracy

For convergence studies, initial value problems defined on x 2 [� 1,1]
PDE : otqþ oxf ðqÞ ¼ 0; f ðqÞ ¼ ð1=aÞqa; ða ¼ 1; 2; 3; 4; 5Þ ð80Þ
IC : q0ðxÞ ¼ 0:25þ 0:5 sinðpxÞ ð81Þ
have been numerically solved on equally spaced grids with periodic boundary conditions; time is evolved until
t = 1/p before shock waves are generated.

Figs. 1(a)–(e) show the convergence studies of ADER and WENO schemes for problems with linear flux
f(q) = q, convex fluxes f(q) = (1/2)q2 and f(q) = (1/4)q4, and non-convex fluxes f(q) = (1/3)q3 and f(q) =
(1/5)q5, respectively. Here L1 norm of global errors versus Dx is plotted in log scale, where the slopes indicate
the order of accuracy. Figures show that all ADER schemes achieve the designed order of accuracy even if Dx

is very small, and ADER5 schemes yield smallest errors among all schemes when Dx is large. Tendency of
scheme errors can be summarized as follows: (1) in the linear problem (Fig. 1(a)), values of errors in
ADERr-D and ADERr-S are same and very small (10�13 in the fifth order schemes), and somewhat smaller
than those of ADERr-waf except for r = 2; (2) in the nonlinear problems (Fig. 1(b)–(e)), values of errors in
ADERr-D, ADERr-S, and ADERr-waf are almost same and small (10�10–10�11 in the fifth order schemes);
(3) in all problems, as expected, errors of ADER1-waf (WAF scheme) are smaller than those of ADER1
(Godunov scheme) for r = 1.

For comparison, results of WENOr schemes are included: with CFL number 0.8, the convergence rate
remains the lower order of accuracy between those of time and space, i.e., third-order, while with time stepping
(79) the convergence rate reaches the designed order of accuracy (2r � 1), and errors of WENO schemes with



Fig. 1. Convergence study.
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r = 4,5 are smaller than those of ADER5 schemes in some range of Dx. However, in the latter time-stepping
case, Dt in highly-accurate WENO schemes should be very small and therefore time-consuming. For example
in the case of Dx = 10�2, CFL condition gives Dt � 10�2, while WENO time stepping condition (79) gives
Dt � 2 · 10�5 and Dt � 10�6 for r = 4 and r = 5, respectively.

Therefore it is concluded that the advantage of ADER schemes is to achieve the designed order of accuracy
up to small Dx, to yield smaller errors in large Dx compared with WENO schemes using the same stencils, and
to have computational efficiency with the CFL number close to unity.





Fig. 3. Wave propagation on linear flux (320 cells).
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ADER2-waf–ADER5-waf on 160 cells. ADER1-waf captures discontinuities sharply, but bluntness appears
in the solution of ADER2-waf. However, the higher the order of accuracy becomes through ADER3-waf–
ADER5-waf, the clearer the discontinuities and apex are. Fig. 2(c) and (d) show the comparison of ADER-
D, ADER-waf and WENO schemes with r = 4 on 160 cells and 40 cells, respectively, and (e) and (f) show
the comparison with r = 5 on 160 cells and 40 cells, respectively. It is observed that in Figs. 2(c) and (e) on
the finer grid, ADER-D, ADER-waf and WENO:dtw generate sharp and clear solutions, but WENO:cfl
causes the overshoot and undershoot at the discontinuity when the time accuracy is largely different from
the spatial one. In Figs. 2(d) and (f), it may be said that ADER schemes capture the discontinuity and apex
better even on the coarse grid. Between ADER-D and ADER-waf, ADER-waf shows clearer capturability
but has less robustness in numerical experiments.

Figs. 3(a) and (b) show the linear propagation of waves by ADER5 until time t = 40 in a finer grid of 320
cells. It is observed that the apex of the triangle and the discontinuities of the rectangle are clearly resolved by
ADER5-D and ADER5-waf without numerical oscillations, and the x � t diagram by ADER5-D shows the
linearity in wave propagation.

5.2.2. Nonlinear problems with convex fluxes f(q) = (1/a)qa (a = 2,4)

The nonlinear conservation laws with convex fluxes f(q) = (1/a)qa (a = 2,4,. . .) with IC:
q0ðxÞ ¼
�1 if jxjP 1

2
;

2 if jxj < 1
2
;

(
ð82Þ
are considered on region x 2 [� 2.5, 1.5]. As indicated in Fig. 4, the breakdown of the initial distribution re-
sults in a expansion fan including a sonic point from the discontinuity at x = �1/2 with left-state value
qL = �1 and right-state value qR = 2, and does in a shock wave from the discontinuity at x = 1/2 with
qL = 2 and qR = �1 with speed S = (2a � 1)/3a.



Fig. 4. Case of convex flux f(q) = (1/a)qa (a: even number).
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Let (xO, tO) represent the location and time where the head expansion wave overtakes the shock wave,
xO ¼ ð3aþ2Þ2a�2
2fð3a�2Þ2aþ2g ;

tO ¼ 6a
ð3a�2Þ2aþ2

:

(
ð83Þ
Then for t < tO the exact solution is given by:
qðx; tÞ ¼

�1 if x < � 1
2
� t;

xþ1=2
t

� � 1
a�1

if � 1
2
� t 6 x < � 1

2
þ 2a�1t;

2 if � 1
2
þ 2a�1t 6 x 6 1

2
þ 2a�1

3a t;

�1 if x > 1
2
þ 2a�1

3a t;

8>>>>><
>>>>>:

ð84Þ
at t = tO the expansion hits the shock at x = xO, and for t P tO when the expansion interacts with the shock, it
is expressed by:
qðx; tÞ ¼

�1 if x < � 1
2
� t;

xþ1=2
t

� � 1
a�1

if � 1
2
� t 6 x 6 X sðtÞ;

�1 if x > X sðtÞ;

8>><
>>: ð85Þ
where Xs(t) is the location of the shock which satisfies the ordinary differential equation:
dX s

dt
¼

X sþ1=2
t

� �a
� 1

a X sþ1=2
t þ 1

� � ð86Þ
with the IC of Xs(tO) = xO.
Here as numerical verification, the problems with convex fluxes f(q) = (1/2)q2 and f(q) = (1/4)q4 are

adopted. In the case of f(q) = (1/2)q2, numerical solutions at t = 0.0, 0.4, 0.8, 1.6 on 40 cells are shown in
Fig. 5 and those on 320 cells are in Fig. 6, with the exact solution. Figs. 5(a)–(d) show the numerical solutions
by ADER1 (Godunov scheme) and ADER1-waf (WAF scheme), those by ADER2-D–ADER5-D, those by
ADER2-waf–ADER5-waf, and those by WENO3:dtw–WENO5:dtw, respectively. It is well-known that near
the sonic point the change of the upwind direction sometimes results in overestimation of slopes, the so-called
glitch phenomena. In the solution by ADER1, the glitch phenomena appear in the expansion fan, the wave
front of the expansion fan is not clear for t < tO, and the shock wave is not sharp, while in the solution by
ADER1-waf the shock and expansion fan appear much clearer. The tendency of ADER1 is observed also
in the solution by ADER2-D. However, the higher the order of accuracy becomes through ADER3-D–
ADER5-D, the more the solution is improved in both expansion and shock waves. Also so as to ADER2-
waf–ADER5-waf, the higher the order is, the better the solution is. Although ADER5-D, ADER5-waf and
WENO5:dtw capture the numerical solutions clearly, the ADER5 schemes capture the shock wave slightly
sharper than the WENO5 scheme. Figs. 6(a) and (b) show the wave formation by ADER5-D on a finer grid
of 320 cells for t 6 1.6. It is understood that the numerical solution is in excellent agreement with the exact
solution without spurious oscillations, and in the x � t diagram the interaction between the expansion fan
and shock wave is clearly observed.
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Fig. 5. Numerical and exact solutions on convex flux f(q) = (1/2)q2 (ADER-D, ADER-waf and WENO; 40 cells).
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In the case of f(q) = (1/4)q4, Figs. 7 and 8 corresponds to Figs. 5 and 6, respectively. ADER1 overestimates
slopes in the expansion fan, while ADER1-waf underestimates slopes. Otherwise the same tendency has been
observed as mentioned in the case with f(q) = (1/2)q2: the higher the order of accuracy is in ADER schemes,
the more the numerical solution is improved in both expansion and shock waves, and ADER5-D and
ADER5-waf capture the shock and expansion waves slightly shaper than WENO5-dtw. The interaction
between the expansion fan and shock wave is clearly observed without numerical oscillations.

5.2.3. Nonlinear problems with non-convex fluxes f(q) = (1/a)qa (a = 3,5)

To investigate the capturability of shock and expansion waves the nonlinear conservation laws with non-
convex fluxes f(q) = (1/a)qa (a = 3,5, . . .) are investigated furthermore. The Riemann problem with IC:
q0ðxÞ ¼
qL ¼ �1:5 if x < 0;

qR ¼ 1:1 if x > 0;

�
ð87Þ
is solved numerically on region x 2 [ �1,2]. In problems with non-convex fluxes, the solutions can exist where
from one discontinuity both shock wave and expansion fan are formed. Let q* be the root of the equation
obtained from S = k(q*), where S is the speed of the shock with jump from qL to q*, and k(q*) is the charac-
teristic peed at q*,
ða� 1Þðq�Þa�1 � ðq�Þa�2qL � ðq�Þ
a�3q2

L . . .� qa�1
L ¼ 0: ð88Þ
If qR > q* > 0 > qL or qR < q* < 0 < qL, both waves are generated. Fig. 9(a) shows this case with IC (87) sat-
isfying the former relation with non-convex flux, and Fig. 9(b) represents the solution with the shock and sub-
sequent expansion waves, respectively. As S = (q*)a�1, the exact solution is given by
qðx; tÞ ¼
�1:5 if x < ðq�Þa�1t;

x
t

� � 1
a�1 if ðq�Þa�1t < x < 1:1a�1t;

1:1 if x P 1:1a�1t;

8>><
>>: ð89Þ
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Fig. 7. Numerical and exact solutions on convex flux f(q) = (1/4)q4 (ADER-D, ADER-waf and WENO; 40 cells).
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Fig. 9. Case of non-convex flux f ( q) = (1/ a) qa( a: odd number).
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Here as numerical verification, the problems with non-convex fluxes f(q) = (1/3)q3 and f(q) = (1/5)q5 are
adopted. In the case of f(q) = (1/3)q3 numerical solutions at t = 0.0, 0.4, 0.8, 1.2 on 30 cells are shown in
Fig. 10 and those on 240 cells are in Fig. 11, with the exact solution. Figs. 10(a)–(d) show the numerical solu-
tion by ADER1 and ADER1-waf, those by ADER2-D–ADER5-D, those by ADER2-waf–ADER5-waf, and
those by WENO3:dtw–WENO5:dtw, respectively. Here pay attention to the shock speed. The location of the
shock wave passing in one cell can be estimated from the cell-averaged value of solution. In the solutions by
ADER1, at the early stage of wave formation, the numerical solution in cell-averaged form is larger than the
cell-averaged value of the exact solution at the shock location, and therefore it is judged that the shock wave in
numerical solution is located in the origin side of that in the exact solution. The reason would be that the
expansion waves are underestimated because of low-order property but the Godunov scheme conserves the
spatial integration of solutions. Consequently the shock speed is to be captured slightly lower than that of
the exact solution. The tendency of ADER1 are observed also in the solution by ADER2-D. However, the
higher the order of accuracy becomes through ADER3-D–ADER5-D, the more the solution is improved even
in the early stage of wave formation. On the other hand, ADERr-waf captures the shock speed much better for
1 6 r 6 5. ADER5-D, ADER5-waf and WENO5:dtw capture the shock and subsequent expansion waves
clearly, and ADER5-waf has the best resolvability. Figs. 11(a) and (b) show the wave formation by
ADER5-D for t 6 1.2 on a finer grid with 240 cells. It is understood that the numerical solution is in excellent
agreement with the exact solution without spurious oscillations, and in x � t diagram it is well observed that
from one discontinuity the shock wave and succeeding expansion fan are formed.

In the case of f(q) = (1/5)q5, Figs. 12 and 13 corresponds to Figs. 10 and 11, respectively. Here the same
tendency has been observed as mentioned in the case with f(q) = (1/3)q3.

5.2.4. Nonlinear problems with non-convex fluxes f(q) = (1/4)(q2 � 1)(q2 � 4)

To investigate the capturability of wave formation complicated more, the nonlinear conservation laws with
non-convex fluxes f(q) = (1/4)(q2 � 1)(q2 � 4) are investigated here. The Riemann problem with IC:
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Fig. 10. Numerical and exact solutions on non-convex flux f (q) = (1/3) q3(ADER-D, ADER-waf and WENO; 30 cells).
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Fig. 11. Wave formation on non-convex flux f(q) = (1/3)q3 (ADER5-D; 240 cells).
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Fig. 12. Numerical and exact solutions on non-convex flux f(q) = (1/5)q5 (ADER-D, ADER-waf and WENO; 30 cells).
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q0ðxÞ ¼
qL if x < 0;

qR if x > 0;

�
ð90Þ
is solved [4] numerically on region x 2 [�1,1].
(1) Case of qL < �

ffiffiffi
5
p

and qR >
ffiffiffi
5
p

As indicated in Fig. 14(a), f(q) takes minimal values at q�R ¼
ffiffiffiffiffiffiffiffi
2=5

p
and q�L ¼ �

ffiffiffiffiffiffiffiffi
2=5

p
, and then

S ¼ kðq�LÞ ¼ kðq�RÞ ¼ 0 holds, where the shock speed and the characteristic speed agree with each other at
q ¼ q�R and q ¼ q�L. Therefore the stationary shock can exist at x = 0 together with expansion fans in both
sides. The exact solution is given by:
qðx; tÞ ¼

qL if x 6 kðqLÞt;
�hð�x=tÞ if kðqLÞt 6 x < 0;

hðx=tÞ if 0 < x 6 kðqRÞt;
qR if kðqRÞt 6 x;

8>>><
>>>:

ð91Þ
where h(n) is the solution of n = f 0(h(n)) in the convex part f ðqÞðq > qI ; qI ¼
ffiffiffiffiffiffiffiffi
5=6

p
is an inflection pointÞ.

Fig. 14(b) shows the solution of ADER1 and ADER5-D in the case of qL = �3 and qR = 3. It is observed
that wave formation of expansion–shock–expansion is clearly captured by ADER5-D.

(2) Case of
ffiffiffiffiffiffiffiffi
5=6

p
< qL <

ffiffiffi
5
p

and �
ffiffiffiffiffiffiffiffi
5=6

p
> qR > �

ffiffiffi
5
p

As indicated in Fig. 14(c), let q�L be the root of equation SL ¼ kðq�LÞ, where SL is the speed of the shock with
jump from qL to q�L, and q�R is the corresponding root of SR ¼ kðq�RÞ. Then expansion waves are formed near
x = 0 and two shock waves propagate to both sides. The exact solution is given by:
qðx; tÞ ¼
qL if x < kðqLÞt;

hðx=tÞ if kðq�LÞt < x < kðq�RÞt;
qR if kðq�RÞt < x;

8><
>: ð92Þ
Fig. 13. Wave formation on non-convex flux f(q) = (1/5)q5
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where h(n) is the solution of n = f 0(h(n)) in the concave part f(q)(�qI < q < qI). In this case where numerical
solution has complicated distribution with convexity and concavity, the WENO interpolation does not work
well, and here the ENO interpolation is adopted in the ADER schemes. Fig. 14(d) shows the solution of
ADER1 and ADER5-D in the case of qL = 2 and qR = �2. It is observed that wave formation of shock–
expansion–shock is clearly captured by ADER5-D.



876 Y. Takakura / Journal of Computational Physics 219 (2006) 855–878
5.2.5. Nonlinear problems with non-convex fluxes f(q) = q2/(q2 + a(1 � q)2)

Consider the Buckley–Leverett equations having the flux above, a simple model for two phase fluid flow in
a porous media[5]. The Riemann problem with IC:
q0ðxÞ ¼
qL ¼ 1 if x < 0;

qR ¼ 0 if x > 0;

�
ð93Þ
is numerically solved on region x 2 [�1,3]. Let q* be the root of equation S = k(q*), then the expansion and
subsequent shock waves are formed, as indicated in Fig. 15 (a). The exact solution is given by
qðx; tÞ ¼
1 if x 6 0;

hðx=tÞ if 0 6 x < kðq�Þt;
0 if kðq�Þt < x;

8><
>: ð94Þ
where h(n) is the solution of n = f 0(h(n)) in the concave part f(q)(qI < q < 1; qI is the inflection point). Also in
this case the ENO interpolation is adopted in the ADER schemes because of the same reason stated in Section
5.2.4. Fig. 15(b) shows the solution of ADER1 and ADER5-D in the case of a = 0.5. It is observed that for-
mation of expansion and subsequent shock waves is clearly captured by ADER5-D.

In this section solutions by ADER-D and ADER-waf have been displayed, and in numerical experiments
the solutions by ADER-S have been almost same as those of ADER-D.

6. Conclusions

On the ADER approach, the state-series expansion forms and the direct expansion forms have been pre-
sented in the viewpoint of the numerical procedure and the accuracy, and the advantages and disadvantages
of the latter forms are discussed in comparison with the former forms. As ADER direct expansion schemes,
ADER-D (standard ones with Godunov states/fluxes) and ADER-waf (ones with WAF states/fluxes) are
adopted for verification in comparison with ADER-S (state-series expansion schemes) and WENO. The ver-
ification has been carried out mainly for the ADER direct expansion schemes up to the fifth order of accuracy
on the scalar conservation laws with a linear flux, nonlinear convex fluxes, and several types of nonlinear non-
convex fluxes. Convergence studies with continuous initial distribution of states have shown that all the
ADER schemes achieve the designed order of accuracy up to small cell sizes, yield small errors even in large
cell sizes, and have computational efficiency with keeping the CFL number close to unity. In verification by
discontinuous initial conditions, as the order of ADER schemes is made higher, the long-time propagation of
apexes and discontinuities is clearly captured in the linear problem, and the waves of shocks and expansions
are correctly formed and interacted in the nonlinear problems, corresponding to each flux. It is remarkable
that ADER-waf schemes have shown sharper resolvability than ADER-D and ADER-S schemes, but have
less robustness. Therefore it is concluded that the ADER direct expansion schemes work well for both the
linear problems and the nonlinear problems with convex and non-convex fluxes.
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Appendix. Forms of a(k), b
ðkÞ
I ; b

ðkÞ
II ; b

ðkÞ
III and w(k)

(1) aðkÞðqð0Þx ; qð1Þx ; . . . ; qðkÞx Þ for k = 1,2,3,4
að1Þ ¼ �kqð1Þx ;

að2Þ ¼ k2qð2Þx þ 2kkqðqð1Þx Þ
2
;
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að3Þ ¼ �k3qð3Þx � 9k2kqqð1Þx qð2Þx � 6kðkqÞ2ðqð1Þx Þ
3 � 3k2kqqðqð1Þx Þ

3
;

að4Þ ¼ k4qð4Þx þ 16k3kqqð1Þx qð3Þx þ 12k3kqðqð2Þx Þ
2 þ 72k2ðkqÞ2ðqð1Þx Þ

2qð2Þx þ 24kðkqÞ3ðqð1Þx Þ
4

þ 24k3kqqðqð1Þx Þ
2qð2Þx þ 36k2kqkqqðqð1Þx Þ

4 þ 4k3kqqqðqð1Þx Þ
4
:

(2) bðkÞI ðqð0Þx ; qð1Þx ; . . . ; qðk�1Þ
x ; f ð1Þx ; . . . ; f ðkÞx Þ for k = 1,2,3,4
bð1ÞI ¼ �kf ð1Þx ;

bð2ÞI ¼ k2f ð2Þx þ 2kkqqð1Þx f ð1Þx ;

bð3ÞI ¼ �k3f ð3Þx � 6k2kqqð1Þx f ð2Þx � 3k2kqqð2Þx f ð1Þx � 6kðkqÞ2ðqð1Þx Þ
2f ð1Þx � 3k2kqqðqð1Þx Þ

2f ð1Þx ;

bð4ÞI ¼ k4f ð4Þx þ 12k3kqqð1Þx f ð3Þx þ 12k3kqqð2Þx f ð2Þx þ 4k3kqqð3Þx f ð1Þx þ 36k2ðkqÞ2ðqð1Þx Þ
2f ð2Þx

þ 36k2ðkqÞ2qð1Þx qð2Þx f ð1Þx þ 24kðkqÞ3ðqð1Þx Þ
3f ð1Þx þ 12k3kqqðqð1Þx Þ

2f ð2Þx

þ 12k3kqqqð1Þx qð2Þx f ð1Þx þ 36k2kqkqqðqð1Þx Þ
3f ð1Þx þ 4k3kqqqðqð1Þx Þ

3f ð1Þx :
(3) bðkÞII ðqð0Þx ; f ð1Þx ; . . . ; f ðkÞx Þ for k = 1,2,3,4
bð1ÞII ¼ �kf ð1Þx ;

bð2ÞII ¼ k2f ð2Þx þ 2kqðf ð1Þx Þ
2
;

bð3ÞII ¼ �k3f ð3Þx � 9kkqf ð1Þx f ð2Þx � 3
1

k
ðkqÞ2ðf ð1Þx Þ

3 � 3kqqðf ð1Þx Þ
3
;

bð4ÞII ¼ k4f ð4Þx þ 16k2kqf ð1Þx f ð3Þx þ 12k2kqðf ð2Þx Þ
2 þ 48ðkqÞ2ðf ð1Þx Þ

2f ð2Þx

þ 24kkqqðf ð1Þx Þ
2f ð2Þx þ 20

1

k
kqkqqðf ð1Þx Þ

4 þ 4kqqqðf ð1Þx Þ
4
:

(4) bðkÞIII ðqð0Þx ; qð1Þx ; . . . ; qðkÞx Þ for k = 1,2,3,4
bð1ÞIII ¼ �k2qð1Þx ;

bð2ÞIII ¼ k3qð2Þx þ 3k2kqðqð1Þx Þ
2
;

bð3ÞIII ¼ �k4qð3Þx � 12k3kqqð1Þx qð2Þx � 12k2ðkqÞ2ðqð1Þx Þ
3 � 4k3kqqðqð1Þx Þ

3
;

bð4ÞIII ¼ k5qð4Þx þ 20k4kqqð1Þx qð3Þx þ 15k4kqðqð2Þx Þ
2 þ 120k3ðkqÞ2ðqð1Þx Þ

2qð2Þx

þ 60k2ðkqÞ3ðqð1Þx Þ
4 þ 30k4kqqðqð1Þx Þ

2qð2Þx þ 60k3kqkqqðqð1Þx Þ
4 þ 5k4kqqqðqð1Þx Þ

4
:

(5) wðkÞðqð0Þx ; qð1Þx ; . . . ; qðkÞx Þ for k = 1,2,3,4
wð1Þ ¼ kqð1Þx ;

wð2Þ ¼ kqð2Þx þ kqðqð1Þx Þ
2
;

wð3Þ ¼ kqð3Þx þ 3kqqð1Þx qð2Þx þ kqqðqð1Þx Þ
3
;

wð4Þ ¼ kqð4Þx þ 4kqqð1Þx qð3Þx þ 3kqðqð2Þx Þ
2 þ 6kqqðqð1Þx Þ

2qð2Þx þ kqqqðqð1Þx Þ
4
:
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